Download App
>> | LShop | >> | Book | >> | Computing & Informat... | >> | Databases | >> | Machine Learning And... |
ISBN
:
9781439841785
Publisher
:
Chapman and Hall/CRC
Subject
:
Databases, Computer Science, Technology, Engineering, Agriculture
Binding
:
HARDCOVER
Pages
:
502
Year
:
2011
₹
7995.0
₹
6475.0
Buy Now
Shipping charges are applicable for books below Rs. 101.0
View DetailsEstimated Shipping Time : 5-7 Business Days
View DetailsDescription
Machine Learning and Knowledge Discovery for Engineering Systems Health Management presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. With contributions from many top authorities on the subject, this volume is the first to bring together the two areas of machine learning and systems health management. Divided into three parts, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management. The first part of the text describes data-driven methods for anomaly detection, diagnosis, and prognosis of massive data streams and associated performance metrics. It also illustrates the analysis of text reports using novel machine learning approaches that helpdetect and discriminate between failure modes. The second part focuses on physics-based methods for diagnostics and prognostics, exploring how these methods adapt to observed data. It covers physics-based, data-driven, and hybrid approaches to studying damage propagation and prognostics in composite materials and solid rocket motors. The third part discusses the use of machine learning and physics-based approaches in distributed data centers, aircraft engines, and embedded real-time software systems. Reflecting the interdisciplinary nature of the field, this book shows how various machine learning and knowledge discovery techniques are used in the analysis of complex engineering systems. It emphasizes the importance of these techniques in managing the intricate interactions within and between the systems to maintain a high degree of reliability.
Author Biography
Ashok N. Srivastava is the Principal Scientist for Data Mining and Systems Health Management at NASA. Dr. Srivastava has received many awards, including the IEEE Computer Society Technical Achievement Award, the NASA Exceptional Achievement Medal, NASA Group Achievement Awards, the IBM Golden Circle Award, and a U.S. Department of Education Merit Fellowship. His current research focuses on the development of data mining algorithms for anomaly detection in massive data streams, kernel methods in machine learning, and text mining algorithms. Jiawei Han is an Abel Bliss Professor of Computer Science at the University of Illinois. He is also the Director of the Information Network Academic Research Center, which is supported by the U.S. Army Research Lab. A fellow of ACM and IEEE, Dr. Han has received numerous honors, including IEEE W.Wallace McDowell Award, IEEE Computer Society Technical Achievement Award, ACM SIGKDD Innovation Award, IBM Faculty awards, and HP Innovation awards. His research interests include data mining, information network analysis, and database systems.
Related Items
-
of
Neural Networks and Artificial Intelligence for Biomedical Engineering
Donna L. Hudson
Starts At
15918.0
18510.0
14% OFF
Godel, Escher, Bach: An Eternal Golden Braid, 20th Anniversary Edition
Douglas R. Hofstadter
Starts At
813.0
1099.0
26% OFF
Designing Concurrent, Distributed, and Real-Time Applications with UML
Hassan Gomaa
Starts At
6079.0
7999.0
24% OFF
Artificial Life V: Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems (Complex Adaptive Systems)
Christopher G. Langton
Starts At
6602.0
7677.0
14% OFF
Digital Filters : Analysis, Design And Applications
Andreas Antoniou
Starts At
487.0
625.0
22% OFF
Adaptive Antennas for Wireless Communications
George V. Tsoulos
Starts At
12470.0
14501.0
14% OFF
Electronic and Photonic Circuits and Devices (Ieee
Ronald W. Waynant
Starts At
10369.0
13644.0
24% OFF